
 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

A decade of evolving developer and designer workflows in a
game engine

Who are we?

2

Adam Mechtley

Lead Developer

DOTS Physics & Rigging

Damian Campeanu

Developer

Editor & UI

What are we going to talk about?

3

— Brief overview of Unity Architecture

— IMGUI

— uGUI

— UI Toolkit

— Q&A

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

* Oversimplified version

More than just a game engine!

5

— Run-Time

– Built-in libraries (input, animation, physics, UI, rendering, etc.)

– Compatible with much of .NET ecosystem

— Editor

— Services

– Analytics, live ops, etc.

— Asset Store

— Millions of users, hundreds of thousands active monthly

How do users make stuff with Unity?

6

— Create GameObjects and add Components to produce behavior

– Create new Components via C#

— Create reusable Prefabs from GameObjects

– Prefabs can be nested in each other with overrides

7

8

9

10

11

12

13

How do users create content for it?

14

— Save source file in project folder

— Built-in or custom asset importer generates artifact(s)

TextureImporter Texture2DPSD

15

How do users create UI with it?

16

2005

Unity 1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity 2.0

IMGUI run-time

2007

2009

Unity 2.5

Customize editor with IMGUI

2014

Unity 4.6

First release of uGUI

2019

Unity 2019.1

First public release of UI Toolkit
(formerly UIElements)

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

2005

Unity 1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity 2.0

IMGUI run-time

2007 2014

Unity 4.6

First release of uGUI

2019

Unity 2019.1

First public release of UI Toolkit
(formerly UIElements)

2009

Unity 2.5

Customize editor with IMGUI

A simple UI framework for an ever-changing world

Design considerations

18

— Unity needs a UI framework! (both run-time and editor)

— Most Unity projects…

– ...are small web player experiences

– ...are created by small teams with few/broad role specializations

— Most game UI…

– ...communicates frequently updating values

– ...is non-diegetic overlays

IMGUI API

19

— OnGUI() callback

– Event loop with Event.current

– Call order determines event handling priority

— Library of static methods in GUI class for common functionality

– GUILayout variants to assist with Rect calculations

– Both run-time and editor-only variants for most types

— GUIStyle class

— GUISkin asset

20

API and Workflow Demo

— But not very great performance

— Limited designer workflows

— No control over rendering pipeline

— Only supports non-diegetic UI

— Lots of manual work making new
controls

+ Gathering and responding to input
is trivial

+ Fast for programmers to
prototype with

+ Works well for property grids

+ Simple API organization

+ Predictable performance

21

IMGUI advantages and disadvantages

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

2005

Unity 1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity 2.0

IMGUI run-time

2007 2014

Unity 4.6

First release of uGUI

2019

Unity 2019.1

First public release of UI Toolkit
(formerly UIElements)

2009

Unity 2.5

Customize editor with IMGUI

A framework for to make UI feel more like the rest of Unity

Design considerations

23

— Unity needs needs to empower designers to be productive
more independently

— Most Unity projects…

– ...are created by teams with clearer role specializations

– ...run on mobile platforms where draw calls are expensive and display
specifications vary wildly

— Most game UI…

– ...contains diegetic/spatial and non-diegetic elements

– ...is richly animated with effects

Fagerholt & Lorentzon (2009)

24

No Yes

No Non-diegetic Spatial

Yes Meta Diegetic

Visualized in 3D world?

Exists in game
fiction?

uGUI API

25

— UIBehaviour base class inherits MonoBehaviour

– Selectable, Graphic, etc sub-classes

— Canvas and CanvasScalar control rendering of hierarchies of elements

– RectTransform (inherits Transform) use for layout

– Most components draw Sprite assets

– Set geometry, materials, etc. on child CanvasRenderer

— StandaloneInputModule and EventSystem gather and delegate input events

– BaseRaycaster of some kind finds event handlers

– IPointerDownHandler, IPointerUpHandler, IDragHandler, etc

26

API and Workflow Demo

— Performance overhead from
GameObjects and Components

— Authoring data format hard to
read and debug at a glance

— No centralized styling

— Canvases require specialized
knowledge to optimize

+ Designer workflows that fit with
other Unity features (prefabs,
animation, etc.)

+ Serializable event handlers

+ Automatic atlasing and scaling
based on physical size, DPI, etc.

+ Diegetic UI

+ Common rendering pathway with
everything else

27

uGUI advantages and disadvantages

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

2005

Unity 1.0

GUITexture, GUIText, GUILayer,
TextMesh

Unity 2.0

IMGUI run-time

2007 2014

Unity 4.6

First release of uGUI

2019

Unity 2019.1

First public release of UI Toolkit
(formerly UIElements)

2009

Unity 2.5

Customize editor with IMGUI

A framework to make Unity feel more like the rest of the world

Design considerations

29

/* styles.uss */

.container { font-size: 40px; }

#random-explosion { color: blue; }

<!-- hierarchy.uxml -->

<UXML xmlns="UnityEngine.UIElements">

 <VisualElement class="container">

 <Style src="styles.uss" />

 <Label

 name="random-explosion"

 text="UIElements!" />

 </VisualElement>

</UXML>

// MyWindow.cs

void OnEnable() {

 var a = AssetDatabase.LoadAssetAtPath(

 "Assets/hierarchy.uxml");

 VisualElement row = a.CloneTree();

 var label =

 row.Q<Label>("random-explosion");

 label.RegisterCallback<MouseUpEvent>(

 evt => evt.StopPropagation());

 rootVisualElement.Add(row);

}

UI Toolkit API

30

1

2

3

/* styles.uss */

.container { font-size: 40px; }

#random-explosion { color: blue; }

<!-- hierarchy.uxml -->

<UXML xmlns="UnityEngine.UIElements">

 <VisualElement class="container">

 <Style src="styles.uss" />

 <Label

 name="random-explosion"

 text="UIElements!" />

 </VisualElement>

</UXML>

// MyWindow.cs

void OnEnable() {

 var a = AssetDatabase.LoadAssetAtPath(

 "Assets/hierarchy.uxml");

 VisualElement row = a.CloneTree();

 var label =

 row.Q<Label>("random-explosion");

 label.RegisterCallback<MouseUpEvent>(

 evt => evt.StopPropagation());

 rootVisualElement.Add(row);

}

31

1

2

3UI Toolkit API

/* styles.uss */

.container { font-size: 40px; }

#random-explosion { color: blue; }

<!-- hierarchy.uxml -->

<UXML xmlns="UnityEngine.UIElements">

 <VisualElement class="container">

 <Style src="styles.uss" />

 <Label

 name="random-explosion"

 text="UIElements!" />

 </VisualElement>

</UXML>

// MyWindow.cs

void OnEnable() {

 var a = AssetDatabase.LoadAssetAtPath(

 "Assets/hierarchy.uxml");

 VisualElement row = a.CloneTree();

 var label =

 row.Q<Label>("random-explosion");

 label.RegisterCallback<MouseUpEvent>(

 evt => evt.StopPropagation());

 rootVisualElement.Add(row);

}

32

1

2

3UI Toolkit API

/* styles.uss */

.container { font-size: 40px; }

#random-explosion { color: blue; }

<!-- hierarchy.uxml -->

<UXML xmlns="UnityEngine.UIElements">

 <VisualElement class="container">

 <Style src="styles.uss" />

 <Label

 name="random-explosion"

 text="UIElements!" />

 </VisualElement>

</UXML>

// MyWindow.cs

void OnEnable() {

 var a = AssetDatabase.LoadAssetAtPath(

 "Assets/hierarchy.uxml");

 VisualElement row = a.CloneTree();

 var label =

 row.Q<Label>("random-explosion");

 label.RegisterCallback<MouseUpEvent>(

 evt => evt.StopPropagation());

 rootVisualElement.Add(row);

}

33

1

2

3UI Toolkit API

34

API and Workflow Demo

— Name-based handles can easily
break

— Inefficient when lots of things are
changing at once

— More complicated Event-based
value bindings

— More complicated bindings to
Unity objects and gameplay

+ Great performance for most use
cases

+ Powerful automatic layouting via
Flexbox

+ Centralized styling using standard
paradigms (CSS)

+ Visual authoring without writing
code

+ One API for both Editor and
Runtime

35

UI Toolkit advantages and disadvantages

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

Final thoughts

37

— Immediate-mode and retained-mode GUI each have strengths
and disadvantages in different situations

— As the rest of the world evolves, so, too, must your API

– Everything comes with a maintenance cost

— Reasonableness of API design decisions is very contextual

– Aesthetic tastes of the historical moment

– Technical requirements of target hardware

– Tools ecosystem

— Design influences users’ expressive capabilities

 G
en

er
at

iv
e

Ar
t —

 M
ad

e
w

ith
 U

ni
ty

#unity3d

